Generalized Helmholtz-Kirchhoff Model for Two-Dimensional Distributed Vortex Motion
نویسندگان
چکیده
The two-dimensional Navier-Stokes equations are rewritten as a system of coupled nonlinear ordinary differential equations. These equations describe the evolution of the moments of an expansion of the vorticity with respect to Hermite functions and of the centers of vorticity concentrations. We prove the convergence of this expansion and show that in the zero viscosity and zero core size limit we formally recover the Helmholtz-Kirchhoff model for the evolution of point-vortices. The present expansion systematically incorporates the effects of both viscosity and finite vortex core size. We also show that a low-order truncation of our expansion leads to the representation of the flow as a system of interacting Gaussian (i.e. Oseen) vortices which previous experimental work has shown to be an accurate approximation to many important physical flows [9].
منابع مشابه
Semi-Analytical Solution for Vibration of Nonlocal Piezoelectric Kirchhoff Plates Resting on Viscoelastic Foundation
Semi-analytical solutions for vibration analysis of nonlocal piezoelectric Kirchhoff plates resting on viscoelastic foundation with arbitrary boundary conditions are derived by developing Galerkin strip distributed transfer function method. Based on the nonlocal elasticity theory for piezoelectric materials and Hamilton's principle, the governing equations of motion and boundary conditions are ...
متن کاملA Localized Approximation Method for Vortical Flows
An approximation method of Moore for Kelvin-Helmholtz instability is formulated as a general method for two-dimensional, incompressible, inviscid flows generated by a vortex sheet. In this method the nonlocal equations describing evolution of the sheet are approximated by a system of (local) differential equations. These equations are useful for predicting singularity formation on the sheet and...
متن کاملThermoelastic Damping and Frequency Shift in Kirchhoff Plate Resonators Based on Modified Couple Stress Theory With Dual-Phase-Lag Model
The present investigation deals with study of thermoelastic damping and frequency shift of Kirchhoff plate resonators by using generalized thermoelasticity theory of dual-phase-lag model. The basic equations of motion and heat conduction equation are written with the help of Kirchhoff-Love plate theory and dual phase lag model. The analytical expressions for thermoelastic damping and frequency ...
متن کاملA dilating vortex particle method for compressible flow ∗
Vortex methods have become useful tools for the computation of incompressible fluid flow. In this work, a vortex particle method for the simulation of unsteady two-dimensional compressible flow is developed. By decomposing the velocity into irrotational and solenoidal parts, and using particles that are able to change volume and that carry vorticity, dilatation, enthalpy, entropy and density, t...
متن کاملThree-dimensional elasticity solution for vibrational analysis of thick continuously graded sandwich plates with different boundary conditions using a two-parameter micromechanical model for agglomeration
An equivalent continuum model based on the Eshelby-Mori-Tanaka approach was employed to estimate the effective constitutive law for an elastic isotropic medium (i.e., the matrix) with oriented straight carbon nanotubes (CNTs). The two-dimensional generalized differential quadrature method was an efficient and accurate numerical tool for discretizing equations of motion and for implementing vari...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Applied Dynamical Systems
دوره 8 شماره
صفحات -
تاریخ انتشار 2009